(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
fac(0, x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0))

Rewrite Strategy: INNERMOST

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

plus(0', x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
fac(0', x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0'))

S is empty.
Rewrite Strategy: INNERMOST

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

Innermost TRS:
Rules:
plus(0', x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
fac(0', x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0'))

Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
fac :: 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
plus, p, times, fac

They will be analysed ascendingly in the following order:
p < plus
plus < times
p < times
p < fac
times < fac

(6) Obligation:

Innermost TRS:
Rules:
plus(0', x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
fac(0', x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0'))

Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
fac :: 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

The following defined symbols remain to be analysed:
p, plus, times, fac

They will be analysed ascendingly in the following order:
p < plus
plus < times
p < times
p < fac
times < fac

(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
p(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)

Induction Base:
p(gen_0':s2_0(+(1, 0))) →RΩ(1)
0'

Induction Step:
p(gen_0':s2_0(+(1, +(n4_0, 1)))) →RΩ(1)
s(p(s(gen_0':s2_0(n4_0)))) →IH
s(gen_0':s2_0(c5_0))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(8) Complex Obligation (BEST)

(9) Obligation:

Innermost TRS:
Rules:
plus(0', x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
fac(0', x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0'))

Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
fac :: 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
p(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

The following defined symbols remain to be analysed:
plus, times, fac

They will be analysed ascendingly in the following order:
plus < times
times < fac

(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
plus(gen_0':s2_0(n229_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n229_0, b)), rt ∈ Ω(1 + n2290 + n22902)

Induction Base:
plus(gen_0':s2_0(0), gen_0':s2_0(b)) →RΩ(1)
gen_0':s2_0(b)

Induction Step:
plus(gen_0':s2_0(+(n229_0, 1)), gen_0':s2_0(b)) →RΩ(1)
s(plus(p(s(gen_0':s2_0(n229_0))), gen_0':s2_0(b))) →LΩ(1 + n2290)
s(plus(gen_0':s2_0(n229_0), gen_0':s2_0(b))) →IH
s(gen_0':s2_0(+(b, c230_0)))

We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).

(11) Complex Obligation (BEST)

(12) Obligation:

Innermost TRS:
Rules:
plus(0', x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
fac(0', x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0'))

Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
fac :: 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
p(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
plus(gen_0':s2_0(n229_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n229_0, b)), rt ∈ Ω(1 + n2290 + n22902)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

The following defined symbols remain to be analysed:
times, fac

They will be analysed ascendingly in the following order:
times < fac

(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
times(gen_0':s2_0(n714_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n714_0, b)), rt ∈ Ω(1 + b·n7140 + b2·n7140 + n7140 + n71402)

Induction Base:
times(gen_0':s2_0(0), gen_0':s2_0(b)) →RΩ(1)
0'

Induction Step:
times(gen_0':s2_0(+(n714_0, 1)), gen_0':s2_0(b)) →RΩ(1)
plus(gen_0':s2_0(b), times(p(s(gen_0':s2_0(n714_0))), gen_0':s2_0(b))) →LΩ(1 + n7140)
plus(gen_0':s2_0(b), times(gen_0':s2_0(n714_0), gen_0':s2_0(b))) →IH
plus(gen_0':s2_0(b), gen_0':s2_0(*(c715_0, b))) →LΩ(1 + b + b2)
gen_0':s2_0(+(b, *(n714_0, b)))

We have rt ∈ Ω(n3) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n3).

(14) Complex Obligation (BEST)

(15) Obligation:

Innermost TRS:
Rules:
plus(0', x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
fac(0', x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0'))

Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
fac :: 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
p(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
plus(gen_0':s2_0(n229_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n229_0, b)), rt ∈ Ω(1 + n2290 + n22902)
times(gen_0':s2_0(n714_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n714_0, b)), rt ∈ Ω(1 + b·n7140 + b2·n7140 + n7140 + n71402)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

The following defined symbols remain to be analysed:
fac

(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol fac.

(17) Obligation:

Innermost TRS:
Rules:
plus(0', x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
fac(0', x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0'))

Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
fac :: 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
p(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
plus(gen_0':s2_0(n229_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n229_0, b)), rt ∈ Ω(1 + n2290 + n22902)
times(gen_0':s2_0(n714_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n714_0, b)), rt ∈ Ω(1 + b·n7140 + b2·n7140 + n7140 + n71402)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

No more defined symbols left to analyse.

(18) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n3) was proven with the following lemma:
times(gen_0':s2_0(n714_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n714_0, b)), rt ∈ Ω(1 + b·n7140 + b2·n7140 + n7140 + n71402)

(19) BOUNDS(n^3, INF)

(20) Obligation:

Innermost TRS:
Rules:
plus(0', x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
fac(0', x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0'))

Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
fac :: 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
p(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
plus(gen_0':s2_0(n229_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n229_0, b)), rt ∈ Ω(1 + n2290 + n22902)
times(gen_0':s2_0(n714_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n714_0, b)), rt ∈ Ω(1 + b·n7140 + b2·n7140 + n7140 + n71402)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

No more defined symbols left to analyse.

(21) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n3) was proven with the following lemma:
times(gen_0':s2_0(n714_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n714_0, b)), rt ∈ Ω(1 + b·n7140 + b2·n7140 + n7140 + n71402)

(22) BOUNDS(n^3, INF)

(23) Obligation:

Innermost TRS:
Rules:
plus(0', x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
fac(0', x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0'))

Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
fac :: 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
p(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
plus(gen_0':s2_0(n229_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n229_0, b)), rt ∈ Ω(1 + n2290 + n22902)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

No more defined symbols left to analyse.

(24) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n2) was proven with the following lemma:
plus(gen_0':s2_0(n229_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n229_0, b)), rt ∈ Ω(1 + n2290 + n22902)

(25) BOUNDS(n^2, INF)

(26) Obligation:

Innermost TRS:
Rules:
plus(0', x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
fac(0', x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0'))

Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
fac :: 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
p(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

No more defined symbols left to analyse.

(27) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
p(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)

(28) BOUNDS(n^1, INF)